Creating data products to classify atmospheric state

Laura Riihimaki

Kyo-Sun Lim

Jessica Kleiss, Larry Berg, Yunyan Zhang, Yan Shi

Motivation

- Cloud classification VAPs to identify periods of shallow cumulus for LASSO
- Discussion: Previous feedback indicates something like this would be useful for creating composite statistics of long-term ARM data sets for model comparison (e.g. cloud existence)

Value Added Product:

1. CLDTYPE (Classified Cloud Types)

Example of classified cloud types

Time-height evolution of radar reflectivity from MMCR at the ARM SGP C1 site on 24 May 2008

Simple definition of cloud types relying on cloud macrophysical quantities such as cloud height and thickness

Cloud type	Cloud base	Cloud top	Cloud thickness	Frequency
Low clouds	< 3.5 km	< 3.5 km	< 3.5 km	
Congestus	< 3.5 km	3.5 - 6.5 km	$\geq 1.5 \text{ km}$	
Deep convection	< 3.5 km	> 6.5 km	\geq 1.5 km	
Altocumulus	3.5 - 6.5 km	3.5 - 6.5 km	< 1.5 km	
Altostratus	3.5 - 6.5 km	3.5 - 6.5 km	$\geq 1.5 \text{ km}$	
Cirrostratus/Anvil	3.5 - 6.5 km	> 6.5 km	$\geq 1.5 \text{ km}$	
Cirrus	> 6.5 km	> 6.5 km	No restriction	

- ☐ Advantage: It can be easily duplicated in cloud resolving models including a large-eddy simulation (LES) model.
- ☐ Disadvantage: The classified cloud type using this method is sensitive to predefined threshold values.

Value Added Product:

2. ShCuTime (Shallow cumulus period)

Schematic diagram of ShCu selection procedure

Selection of single-layer low cloud type

$$T_L(0.5) < cf_TSI < T_H(70)$$

 $C_L(0) < cf_ceilometer$

Frequency of low clouds during 1 hour > 2

Duration of ShCu > 1.5 h Separation of each ShCu case > 2.5 h

Separation of transition case (St, Ci, Ac)

Selected ShCu

- □ cf_TSI: Alto Cumulus have larger opaque TSI cloud fraction.
- cf_ceilometer: Detected cloud base information from ceilometer is the critical component to distinguish the real clouds from smoke plume.

- Check Cf_T during ShCu
- Incorporate VISST Cf > 25%

 $Cld_top > 7.5 \text{ km}$

Evaluation of algorithm using manually identified ShCu from Berg & Kassianov (LB08) and Zhang and Klein (ZK13) during 9 years (2000-2008)

Hit	Miss	Overlap	False positives	Transition	Data issues
Both (Either)			(Large-scale/smoke/Ac))	
35 (59)	5	9	17 (3/1/10)	15	17

- Based on a comparison of our samples with the dataset from both in LB08 or ZK13, our method shows 61 percent success rate.
- ☐ If we consider any hit from either LB08 or ZK13, our method shows 73 percent agreement.

Example of Hit, False positive impacted by large scale, Miss, Overlap cases.

Questions & Discussion:

- Is a general cloud type classification of interest at other sites besides SGP?
- What other indices are of interest to describe the atmosphere or partition ARM observations?